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Abstract— Threshold logic has been known to be an alternative to
Boolean logic for over four decades now. However, due to the lack of
efficient circuit implementations, threshold logic did not gain popularity
until recently. This change is motivated by new and efficient alternative
CMOS implementations for threshold logic and futuristic nano devices
like RTDs and SETs which possess inherent threshold properties. This
paper motivates the need for threshold logic, and justifies it as an
alternative design technique in the post-CMOS era. We present a novel
synthesis algorithm for threshold circuits based on tree matching. In
comparison with the previous state of the art methods the proposed
method demonstrates an improvement of 25% in the number of gates
required (max improvement is 50%) and comparable circuit depth.

I. INTRODUCTION

Through continuous scaling for over 35 years, the dimensions of
MOSFETs have reached atomic scales. After 10-15 years, the SIA
roadmap [1] predicts that further scaling will not be sustainable, and
expects a transition from CMOS to presently nascent nano technolo-
gies such as resonant tunneling diodes (RTDs)[12], carbon nanotube
FETs (CNFETs) [4], and single electron transistors (SETs) [10].

Innovations in manufacturing technology are certainly crucial, but
are not sufficient. The development of a new design technology which
includes new circuits architectures, design methodologies, and CAD
tools are part of the essential infrastructure needed to prepare for
the post-CMOS era. An important and distinctive characteristic of
these post-CMOS nano technologies is that they make it possible to
efficiently and naturally implement threshold logic (TL). Moreover,
TL can not only be be implemented efficiently in today’s CMOS tech-
nology, but can also help mitigate the challenges posed by scaling,
providing a means for seamless adoption of the new technology.

The basic concepts underlying TL are not new. Much of the earlier
work on TL dates back to the 1960s [11], [6], [17], [9], which
focused primarily on exploring the theoretical aspects with little
attention being paid to the synthesis and optimization of large TL
networks. Recently, however, there has been renewed interest in TL,
and numerous methods have been proposed for the synthesis and
verification of threshold circuits [14], [3], [13], [15], [16].

In this work, we present a new method for synthesizing a multi-
level threshold network. We provide a clear justification for the
statements made above on the various advantages of TL logic. Having
justified the importance of TL logic, we proceed with description of
the algorithm for synthesis of threshold networks, given a factored
form (represented as a factor tree) of the function. The method
partitions the factor tree into sub-trees such that each sub-tree
represents a threshold function. The method makes use of a built in
library of threshold gates for the determination of threshold functions.
Using such a library, the algorithm uses the principles of dynamic
programming with tree matching to generate a threshold network with
the least number of threshold elements.

A. Main Contributions

The most important contribution of this work is that it makes
use of a factored form of a logic function to generate the threshold
circuit. To the best of our knowledge, we believe that this is this first
method for synthesizing multi-level threshold networks starting from

a functional representation. Most of the improvements generated can
be attributed to this feature. This is in contrast to the most recently
published method [14] for synthesis of threshold networks that uses
a Boolean circuit as an input. In addition, the method to be described
eliminates the need for using integer linear programming (ILP) [11] to
determine whether a given function is threshold. We believe that this
is an important step towards development of TL design automation
methods that are independent of Boolean logic optimization.

II. BACKGROUND AND MOTIVATION

Definition 1: A threshold logic (TL) gate has n binary inputs
x1, . . . , xn, and a single binary output y. Its internal parameters are a
threshold T and weights w1, . . . , wn, where weight wi is associated
with input xi. The values of the threshold T and the weights wi

(i = 1, . . . , n) may be any finite real numbers [6], [9], [11]. The
input output relation of a threshold gate is defined as:

y =


1 if

Pn
i=0 wixi ≥ T

0 otherwise
(1)

The weighted sum in Equation (1) denotes arithmetic summation.
Note: A threshold function is one that can be realized by a single
TL gate. It is completely characterized by the set of weights W =
(w1, . . . , wn) and the threshold T , and hence is denoted by [W ; T ].

Differential current-mode logic (DCML) [5] has been studied as
an alternative to static CMOS TL design. DCML is a dynamic logic
style that utilizes a differential current comparator cell to compare
two currents over a selected time interval and output which of the
two is larger. Figure 1 shows the general structure of the DCML gate.
Each gate is comprised of two physically symmetrical cross-coupled
networks: the input network and the threshold network. Each network
consists of some number of parallel devices which are used to define
the input weights and the threshold value of the function. Each gate is
operated in two stages: the reset stage and the evaluation stage. While
the gate is in the reset stage, both the output and negated output are
pulled low. When the gate transitions to the evaluation stage, either
the output or negated output is pulled high, depending on result of
the threshold computation. Once the evaluation has completed, the
outputs are effectively latched until the next reset stage.

Fig. 1. DCML TL Gate Schematic Fig. 2. NDR TL Gate Schematic

Area advantages: The transistor stack size of DCML is constant,
thus increasing the size of devices to accommodate larger fan-in is
not required. Additionally, threshold functions in DCML are defined
merely by sizing the widths of the devices in the input and threshold
networks. This approach may require far fewer devices than a static
CMOS implementation (especially as the fan-in increases). Figure 3



compares the area of a DCML and static CMOS gate for fan-in up to 6
inputs. As indicated, the constant area overhead of DCML is quickly
dwarfed by the rising area cost of CMOS as the fan-in increases.
Energy and delay advantages: As the size and number of devices
in the gate increases, the energy required by the gate will naturally
increase as well. Since DCML consumes no stand-by current, only
the energy consumed per computation is considered. In CMOS
implementations, delay increases as the transistor stack size increases,
and decreases as the size of the devices increases. In DCML, the
transistor stack size is constant. Figure 4 shows that the energy-delay
product for the n-input NOR for static CMOS grows very quickly,
while the energy-delay product for DCML grows very slowly.

Fig. 3. Worst case gate area Fig. 4. EDP for NOR function

Transition to RTD based design: The greatest advantage of the
DCML style is the ease with which one can transition from it to the
logic style implemented by future nanoscale devices utilizing proper-
ties of negative differential resistance. Negative differential resistance,
or NDR, is a characteristic of many nanoscale devices identified by
a non-monotonic current flow as a function of differential voltage.
This property enables individual devices to act as implicit memory
elements. The monostable-bistable logic element, or MOBILE [12],
has been studied extensively by researchers investigating resonant
tunneling diodes and other NDR nanoscale devices. As Figure 2
shows, monostable-bistable NDR logic elements have the exact same
general components as DCML. They possess an input network of
parallel devices, a threshold network of parallel devices, a control
signal which switches the logic element between a reset and evalua-
tion stage, and the same self-latching output property. Since the input
weights and threshold value are determined by parallel devices just
as they are in DCML, any DCML gate may be simply replaced by
an NDR gate.

III. PREVIOUS WORK

Until recently, there has been no significant effort to develop
efficient algorithms for synthesizing multi-level TL networks. Much
of the earlier work related to TL synthesis [11], [9] focused on
determining whether or not a given Boolean function is threshold,
i.e. can be implemented using a single TL gate. The direct approach
is to derive a set of linear inequalities or constraints from the truth
table, remove the redundant constraints and see if the resulting set is
consistent. If so, then linear programming is used to determine the
minimal weight assignment. Techniques for synthesizing two-level
networks using K-maps [9] have also been known for a long time but
are not practical for circuits of present-day complexity. An algorithm
for synthesis of two-level TL networks with weights restricted to be
±1 is described in [2].

The problem of multi-level TL network synthesis has been in-
vestigated only recently [13], [14]. These techniques start with a
Boolean network, synthesized using existing logic synthesis tools,
and heuristically merge gates to form threshold gates. Whether or not

gates can be merged to form TL gates is determined by repeatedly
solving an ILP problem. The quality of the results are very sensitive to
the input Boolean network. While these works address multi-level TL
network synthesis, there is little that can be said about the optimality
of the results.

The method proposed in [3] designs a generic multilayer forward
feed threshold circuit by transforming the synthesis problem into a
satisfiability problem. This method [3] does not limit the fan-in of
gates. Limiting the fan-in is important, as fan-in cannot be arbitrarily
large in a physical implementation. We limit our fan-in to six and
compare our work with that of [14].

IV. PROBLEM FORMULATION

A. Definitions and Notations

Maximally Factored Factor Form: A factored form is maximally
factored [7] if 1) for every sum of products, there are no syntactically
equivalent factors in the product, and 2) for every product of sums,
there are no two syntactically equivalent factors in the sums.

Best Literal Factorization: This is a type of generic factoring
algorithm [7] in which the algebraic divisor chosen is the literal that
occurs in the greatest number of cubes. e.g: a(b + c) + d is the
best-literal factorization of the SOP ab + ac + d.

The Factor Tree: The factor tree is a binary expression tree which
represents the factored form of a Boolean function. The leaf nodes
of the factor tree correspond to the literals in the factored form,
and the non-leaf nodes correspond to the conjunction and disjunction
operators in the factored form. For example the factor tree for the
function (a + b′)(c′ + d) is shown in Figure 5.

Threshold Gate Library: The threshold gate library is a collection
of all unique factor trees of threshold functions. For example, a
threshold gate library with a fan-in restriction of three would consist
of the following factor trees: ab, a+b, a+bc, a(b+c), abc, a+b+c
and a(b + c) + bc. All functions are maximally factored. Here a, b
and c are generic place holders for three unique literals. Each literal
can occur in positive or negative form.

V. TREE MATCHING USING DYNAMIC PROGRAMMING

The algorithm takes as input a maximally factored form of the
function. The objective is to generate a circuit that implements the
given function using the minimum number of threshold gates. We
have at our disposal a library of all threshold gates of n or fewer
inputs, for a specified n. We attempt to divide the entire factor tree
into a set of disjoint sub-trees, such that each sub-tree corresponds
to a tree present in the library. We can replace each sub-tree by the
threshold gate it represents, thus obtaining our required circuit.

Example: Consider a library that has all 4 input threshold gates.
Figure 6 shows a valid tree partitioning for the factor tree of H =
(ab+cd)e′. Once the circuit structure is determined, we can trivially
assign the predetermined weight and threshold to each element
(which is determined when the library is built, and is done only
once). Thus the issue of weight-threshold determination is eliminated
in this approach. Assigning weights to negative literals is done as
follows: if f(X) realized as a threshold gate has the structure [W ; T ],
f(X, xp → xp

′) is realized with [w1, w2, · · · ,−wp, · · · , wn; T−wn]
(see Theorem 3.2.2 page 58 in [11]).

We first describe how the algorithm works for a single output
function. When any functional representation of the function is given,
the maximally factored form of the function is obtained. A factor tree
is constructed for this factored form (using getFactorTree). The
method is unlike the state-of-art TL synthesis method [14], which
takes an optimized Boolean network as input.



Fig. 5. Factor Tree Fig. 6. Partitioned tree and circuit

A library, which has factor trees of all threshold functions with
n or fewer inputs is also provided as input. Using the library the
factor tree of the function is partitioned into sub-trees, such that each
sub-tree corresponds to a factor tree in the library. Since all threshold
functions are known beforehand, pre-determined weights are assigned
to each gate. The factored tree is a global data structure.

Algorithm 2 (GETCOST) is the dynamic programming [8] formu-
lation of the algorithm. Dynamic programming makes the procedure
efficient by memoizing optimal solutions and eliminating redundant
computations [8]. COSTMATRIX and SOLUTION are global data
structures that store the intermediate results. Each of these arrays
has one entry for each non-leaf node in the factor tree. Each entry in
COSTMATRIX stores the cost (the number of gates) for implementing
the function rooted at that node. SOLUTION stores the threshold gate
that is to be used at that node in the least gate circuit. SOLUTION

is necessary to recover the best solution, once the execution of
the algorithm (GETCOST) is complete. The initial invocation of
GETCOST takes in the root node of the factor tree as the argument.

Algorithm 1: Tree partitioning algorithm for TL Synthesis
Input: Maximally factored form (MFF), TL gate library.
Output: A threshold circuit implementing the function.
** CostMatrix stores the min. gate count for each node. **
** Solution stores best solution for each node. **
** Initialize the elements in COSTMATRIX to ∞ **
TREEPARTITION(node)
(1) root = GETFACTORTREE(MFF)
(2) GETCOST(root)
(3) GENERATESOLUTION(Solution)

Algorithm 2: Least Gate TL Circuit Algorithm
Input: A node in the factor tree; TL gate library – Library.
Output: – N/A –
GETCOST(node)
(1) if node is leaf
(2) return 0
(3) else
(4) foreach Gate in Library
(5) if Gate fits at node
(6) ** L = the list of nodes in factor tree that corresponds

to the leaves of GATE.**
(7) Cost = 1.
(8) foreach inpNode in L
(9) if CostMatrix[inpNode] <∞
(10) Cost += CostMatrix[inpNode].
(11) else
(12) Cost += GETCOST(inpNode).
(13) if Cost < CostMatrix[node]
(14) CostMatrix[node] = Cost.
(15) Solution[node] = Gate
(16) return CostMatrix(node)

Algorithm 3: Generating the solution TL circuit from the SOLUTION

array
Input: A node in the factor tree – node
Output: – N/A –
GENERATESOLUTION(node)
(1) Gate = Solution[node]
(2) Generate the weight and threshold for the corresponding function

in the factor tree, matching GATE

(3) ** L = the list of nodes in the factor tree that correspond to the
leaves of GATE.**

(4) foreach inpNode in L
(5) if inpNode in Solution
(6) GENERATESOLUTION(inpNode)

The algorithm GETCOST calculates the minimal number of gates
required to implement the given function. The algorithm also enu-
merates the actual solution. The solution is reconstructed from the
SOLUTION data structure by the GENERATESOLUTION function.

The advantage of this dynamic programming formulation is that
the best circuit implementation for each node is calculated only once.
Since the cost and solution are stored, they can simply be read from
their stored values rather than recomputed when they are required
later, significantly improving the complexity of the algorithm.

A. Optimality of the Algorithm

Optimality of the algorithm is ensured by choosing the best circuit
implementation for each node in the factor tree (lines 13 - 15 in
Algorithm 2). Since SOLUTION stores the gate-minimal implementa-
tion for each node, after the algorithm completes execution the gate
optimal solution for the root node is present in SOLUTION.

The reduction in the number of gates for a threshold circuit is more
complex than for a Boolean circuit. After obtaining the minimal literal
factored form, obtaining the minimal gate implementation is a non-
trivial problem. In this regard, the proposed algorithm guarantees a
gate minimal implementation once we decide on the factored form.
The proposed algorithm gives the optimal gate-efficient implemen-
tation for a single output function. For a multi-output function, no
such claim can be made, as the quality of the result depends on the
initial logic optimization and extraction.

B. Complexity of the Algorithm

The time spent on a single call to GETCOST is O(1) (the size of the
library is finite and fixed, thus it is constant), excluding the time spent
in the recursive calls it generates. So the running time is bounded by
a constant times the number of calls issued to GETCOST. Since the
algorithm gives no explicit upper bound on the number of calls, we
try to find a bound by looking at a good measure of progress [8].

The most useful measure of progress is the number of entries in
COSTMATRIX that are not infinity. Initially the number is zero. Each
time the procedure is invoked by recursion, a new entry is filled.
Since COSTMATRIX has only O(n) entries, n being the number of
nodes in the input factor tree, there can be at most O(n) calls to
GETCOST. Therefore the running time of GETCOST(node) is O(n).
GENERATESOLUTION and GETFACTORTREE (lines 1 and 3 in Al-
gorithm 1) both have O(n) complexity. Hence the TREEPARTITION

algorithm has O(n) complexity (linear time complexity).

C. Synthesis Flow For Multi-Output Functions

We now describe a synthesis procedure for multi-output functions
that internally makes use of the tree partitioning algorithm. The
procedure starts with a functional representation of the circuit. Next,
logic optimization and extraction of common sub-functions from the



circuit is performed. This generates a circuit graph in which each
node is a logic function. The maximally factored form of each node is
then generated. After generating the factor tree, the tree partitioning
algorithm is used to generate the threshold network of each node.
These individual circuits are combined, using the original circuit
graph, to get the final TL circuit for the entire multi-output function.

VI. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in Python and was run
on an Apple iBook with a G4 processor and 1 GB RAM. To generate
the library we use the list of threshold functions provided in [11]. The
list has all 2 to 5 input threshold networks. We generated a subset of
six input threshold gates by using the five input threshold functions.
If f(x1, ..., xn) is a threshold function, then y + f(x1, ..., xn) and
z.f(x1, ..., xn) are also threshold functions [11]. Next, we obtained
the factored forms and generated factor trees for these functions.
The collection of these factor trees constitutes the library, which is
an input to our procedure.

TABLE I
COMPARISON WITH PREVIOUS WORK

Bench- Boolean Circuit Method in [14] Our Method
mark Gates Levels Gates Levels Gates Levels

b1 10 4 8 3 6 4
decod 24 3 24 3 18 2
parity 45 9 45 9 30 8
f51m 101 8 82 8 44 4

9symml 141 10 110 9 85 10
cm162a 39 7 26 8 18 5
cm163a 40 6 25 6 15 4

tcon 32 3 32 3 16 2
cordic 61 9 49 7 30 6

ttt2 127 7 100 6 89 7
pcler8 50 7 47 7 34 9
frg1 97 12 59 9 40 7

my adder 160 34 96 18 65 19
term1 278 11 226 10 118 9

cht 119 5 82 5 73 3
apex7 171 10 118 9 106 9

x1 293 8 203 7 104 7
example2 226 9 182 8 146 8

x4 264 7 189 8 176 6
apex6 543 12 396 12 326 10

Circuits in the MCNC benchmark suite were synthesized using
the proposed method. A subset of the results are reported in Table I.
Gate count and depth are non-technology specific metrics for area
and delay. The table lists the results for the benchmark circuits when
implemented as Boolean circuits and as TL circuits by the method
described in [14]. Compared to the method in [14], our method
generates circuits with comparable depth and 25% fewer gates on
average (50% at best).

Histograms comparing results are shown in Figure 7. The x-axis
of the first histogram represents the number of gates in the Boolean
circuit. The y-axis plots the average number of gates in the threshold
circuits generated by the two methods for the same benchmarks. As
seen in the figure the proposed approach needs fewer gates than
the previous approach in every range. The improvement in the gate
count is greater for larger circuits. The second histogram is similar
but plots the average level of threshold circuits generated by the
two approaches. Our method generates circuits with greater levels in
some ranges and is comparable in other ranges. The objective of this
method is to reduce the gate count and in this regard the proposed
method does better than the previous method for nearly all circuits.

The comparison has only been done with the results reported
in [14]. Comparison with the method in [3] is not meaningful because
it does not impose a fan-in limit on gates. Both [14] and our method
limit the fan-in of gates to six. The average runtime for the method
is around 5 seconds. A runtime comparison with [14] is also not

Fig. 7. Comparison of results

meaningful since their method uses an optimized Boolean network
as input whereas the method presented herein starts with the basic
logic representation. Runtimes reported in [3] are of the order of
minutes (even for small circuits with three inputs).

The algorithm presented in this paper demonstrates a large im-
provement over Boolean logic implementations. It also demonstrates
significant improvement over the previous TL synthesis method. The
fan-in restriction we assume (six) is reasonable in light of device
considerations. In the few circuits where we do worse, results can
be improved by better logic extraction for threshold logic. The factor
tree method may be extended to develop new TL extraction methods.

VII. CONCLUSION

A novel threshold logic synthesis method is proposed. The main
contribution of this work is that it is the first step towards the
development of an independent theory for TL CAD. Unlike other
methods, this approach starts with a functional representation and not
a Boolean circuit. It also eliminates the use of the ILP formulation
by using pre-determined weights. Currently, the focus of this method
is on reducing the number of gates. In the future, this method can be
extended to design level optimal circuits and synthesis methodologies
with area-delay trade-offs.
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